Abstract
Bimetallic nanoparticles (NPs) usually exhibit some novel properties due to the synergistic effects of the two distinct metals, which is expected to play an important role in the field of gas sensing. PdPt bimetal NPs with Pd-rich shell and Pt-rich core were successfully synthesized and used to modify SnO2 nanosheets. The 1P-PdPt/SnO2-A sensor obtained by self-assemblies of PdPt NPs exhibited temperature-dependent dual selectivity to CO at 100 °C and CH4 at 320 °C. Furthermore, the sensor possessed good long term stability and antihumidity interference. The activation energy of adsorption for CO and CH4 were estimated by the temperature-dependent response process modeled using Langmuir adsorption kinetics, which proved that the lower activation energy of adsorption corresponded to better sensing performance. The gas-sensing mechanism based on the diffusion depth of the tested gas in the sensing layer was discussed. The dramatically improved sensing performance could be ascribed to the high catalytic activity of PdPt bimetal, the electron sensitization of PdO, and Schottky barrier-type junctions at the interface between SnO2 and PdPt NPs. Our present results demonstrate that bimetal NPs with special structure and components can significantly improve the gas-sensing performance of metal oxide semiconductor and the obtained sensor has great potential in monitoring coal mine gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.