Abstract
AbstractNovel 2D semiconductors play an increasingly important role in modern nanoelectronics and optoelectronics. Herein, a novel topology designer based on component fusion is introduced, featured by the submolecular component integration and properties inheritance. As expected, a new air‐stable 2D semiconductor PdPSe with a tailored puckered structure is successfully designed and synthesized via this method. Notably, the monolayer of PdPSe is constructed by two sublayers via PP bonds, different from 2D typical transition metal materials with sandwich‐structured monolayers. With the expected orthorhombic symmetry and intralayer puckering, PdPSe displays a strong Raman anisotropy. The field‐effect transistors and photodetectors based on few‐layer PdPSe demonstrate good electronic properties with high carrier mobility of ≈35 cm2 V−1 s−1 and a high on/off ratio of 106, as well as excellent optoelectronic performance, including high photoresponsivity, photogain, and detectivity with values up to 1.06 × 105 A W−1, 2.47 × 107%, and 4.84 × 1010 Jones, respectively. These results make PdPSe a promising air‐stable 2D semiconductor for various electronic and optoelectronic applications. This work suggests that the component‐fusion‐based topology designer is a novel approach to tailor 2D materials with expected structures and interesting properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.