Abstract

Binarization of digital documents is the task of classifying each pixel in an image of the document as belonging to the background (parchment/paper) or foreground (text/ink). Historical documents are often subjected to degradations, that make the task challenging. In the current work a deep neural network architecture is proposed that combines a fully convolutional network with an unrolled primal-dual network that can be trained end-to-end to achieve state of the art binarization on four out of seven datasets. Document binarization is formulated as an energy minimization problem. A fully convolutional neural network is trained for semantic segmentation of pixels that provides labeling cost associated with each pixel. This cost estimate is refined along the edges to compensate for any over or under estimation of the foreground class using a primal-dual approach. We provide necessary overview on proximal operator that facilitates theoretical underpinning required to train a primal-dual network using a gradient descent algorithm. Numerical instabilities encountered due to the recurrent nature of primal-dual approach are handled. We provide experimental results on document binarization competition dataset along with network changes and hyperparameter tuning required for stability and performance of the network. The network when pre-trained on synthetic dataset performs better as per the competition metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.