Abstract

Owing to the ubiquitous occurrence and chemotoxicity of BTEX (benzene, toluene, ethylbenzene and xylene), the development of stable and accurate analysis methods that can assess environment risks and can generate monitoring data rapidly is urgent. In this work, a new strategy was proposed for efficient detection of BTEX. By creatively utilizing thermal deposition method, a robust SPME fiber was fabricated, where the γCD-MOF acted as the adsorbent, while PDMS functionalized as the adhesive and protective coating. Benefiting from the protection of PDMS, the γCD-MOF fiber presented significantly better extraction performance and exhibited long-term structural stabilities in aqueous or methanol samples up to a week. The stable and improved properties of γCD-MOF demonstrated that the PDMS protected the MOF components from the adverse effects of solvent. The detection limits of PDMS modified γCD-MOF fiber for BTEX was as low as 0.13–0.29 ng L−1 that accompanied with wide linear range of 1–1000 ng L−1, which was significantly superior to commercial PDMS fiber and other MOF-based fibers. Besides, the feasibility of the proposed method was verified by the quantitative determination of BTEX in real water samples. This work presents an effective strategy for creating ultrasensitive and stable SPME fibers based on γCD-MOF for applications in aqueous samples or other poor solvent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call