Abstract

Growth cone collapse is a critical repulsive response to various guidance cues for axon guidance. Protein kinase C epsilon (PKCε) plays important regulation roles in such responses. Translocation of PKCε from cytoplasm to membrane is crucial to archive its regulatory roles in this process. We previously reported that PDLIM5 could selectively recruit PKCε to its specific substrate in neurons. However, the molecular mechanism of PKCε translocation in the neuronal growth cone collapse remains elusive. Here, we demonstrated that PDLIM5 and PKCε co-existed in the nerve growth cones. By interacting with α-actinin, but not β-actin or β-tubulin, PDLIM5 might contribute to regulation of remodeling of the microfilaments in neurons. Meanwhile, PDLIM5 could also bind to PKCε to form PDLIM5-PKCε complexes in growth cones. In the primary cultured neurons, activation of PKCε by PMA resulted in translocation of both PKCε and PDLIM5 from cytoplasm to the membrane. Knockdown of either PDLIM5 or PKCε rescued the neuron from PMA-induced growth cone collapse. Furthermore, in neurons, application of PDLIM5 shRNA or over-expression of PDLIM5 LIM1-3 mutants reduced the amount of PKCε in the membrane. Together, these results suggest that PDLIM5 acts as a scaffold protein by mediated PKCε translocated to the membrane in PMA-induced growth cone collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.