Abstract
Colorectal carcinomas are the third-most common tumors in the world, and colorectal cancer ranks second in cancer-related deaths. Our aim in this study was to investigate the correlation between programmed cell death ligand 1 (PD-L1) expression and clinicopathologic parameters in colorectal carcinomas and their relationship to the tumor immune microenvironment, epithelial-mesenchymal transition (EMT), and microsatellite instability. We also investigated the predictive and prognostic role of PD-L1. One hundred patients with a diagnosis of colorectal adenocarcinoma who did not receive neoadjuvant therapy were included in the study. The relationships among the altered expression of PD-L1; vimentin; E-cadherin; mismatch repair status; and pathologic microenvironmental features, including the presence of tumor budding and CD8-positive tumor infiltrating lymphocytes (TILs), were assessed. Increased PD-L1 expression in tumor cells was associated with increased TILs (P = .013), high histologic grade (P = .011), advanced pathologic T stage (P = .007), lymph node metastasis (P = .002), distant metastasis (P < .001), perineural invasion (P = .009), high bud score (P = .023), EMT (P < .001), and shorter disease-free survival (P = .029). Overall, PD-L1 expression in colorectal carcinoma tumor cells is a marker of poor prognosis, and the positive correlation detected between EMT status and PD-L1 expression suggests that patients with the mesenchymal phenotype may be more likely to benefit from programmed cell death 1 protein/PD-L1 immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.