Abstract

In three-dimensional matrices cancer cells move with a rounded, amoeboid morphology that is controlled by ROCK-dependent contraction of acto-myosin. In this study, we show that PDK1 is required for phosphorylation of myosin light chain and cell motility, both on deformable gels and in vivo. Depletion of PDK1 alters the localization of ROCK1 and reduces its ability to drive cortical acto-myosin contraction. This form of ROCK1 regulation does not require PDK1 kinase activity, but instead involves direct binding of PDK1 to ROCK1 at the plasma membrane; PDK1 competes directly with RhoE for binding to ROCK1. In the absence of PDK1, negative regulation by RhoE predominates, causing reduced acto-myosin contractility and motility. This work uncovers a novel non-catalytic role for PDK1 in regulating cortical acto-myosin and cell motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.