Abstract

p21(WAF1/CIP1) Contributes to positive and negative growth control on multiple levels. We previously mapped phosphorylation sites within the C-terminal domain of p21 that regulate proliferating cell nuclear antigen binding. In the current study, a kinase has been fractionated from mammalian cells that stoichiometrically phosphorylates p21 at the Ser146 site, and the enzyme has been identified as an insulin-responsive atypical protein kinase C (aPKC). Expression of PKCzeta or activation of the endogenous kinase by 3-phosphoinositide dependent protein kinase-1 (PDK1) decreased the half-life of p21. Conversely, dnPKCzeta or dnPDK1 increased p21 protein half-life, and a PDK1-dependent increase in the rate of p21 degradation was mediated by aPKC. Insulin stimulation gave a biphasic response with a rapid transient decrease in p21 protein levels during the initial signalling phase that was dependent on phosphatidylinositol 3- kinase, PKC and proteasome activity. Thus, aPKC provides a physiological signal for the degradation of p21. The rapid degradation of p21 protein during the signalling phase of insulin stimulation identifies a novel link between energy metabolism and a key modulator of cell cycle progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call