Abstract

The easily installed and removed N-(2-pyridyl)sulfonyl group exerts complete C2 regiocontrol over the Pd(II)-catalysed C-H alkenylation of indoles and pyrroles, affording the corresponding products in good isolated yields (typically > or = 70 %). A remarkable feature of this catalyst system is that it tolerates a wide variety of substituted alkenes, including conjugated electron-deficient alkenes, styrenes and 1,3-dienes, as well as conjugated 1,1- and 1,2-disubstituted olefins. The final reductive desulfonylation affords the C2-substituted, free-NH indoles and pyrroles in good yield. This N-(2-pyridyl)sulfonyl-directing strategy has also been extended to the development of a protocol for the intermolecular, dehydrogenative homocoupling of indoles, providing 2,2'-biindoles. Mechanistic work based upon reactions with isotopically labelled starting materials and competitive kinetic studies of electronically varied substrates suggests a chelation-assisted electrophilic aromatic substitution palladation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.