Abstract

Healthcare, which raises several challenges regarding security and privacy, is the largest sector of society dealing with patients’ health data. Numerous approaches have been developed regarding healthcare; however, these approaches lead to high response time and leakage of transaction privacy. Thus, this work proposes PDHSMICK, a partial key-based secure EHRs with distributed cloud for Healthcare Systems applying Mimetic Interpolation-based CRYSTALS-Kyber (MI-CRYSTAL-Kyber). Primarily, the patient and doctor register with the system. After that, the patient logs in and books an appointment with the doctor. Then, consultation is done, and their details are sent to the Third-Party Auditor (TPA), where they store the information in the log file. Afterwards, the patient verifies the log file and then uploads the information to the concerned Cloud Server (CS). During uploading, the files are split, and the attributes from the files and Distributed Cloud Server (DCS) are extracted. Then, by utilizing Interpolation-based Pearson Correlation Coefficient (I-PCC), a particular DCS is selected. After that, for authorization purposes, a hash code and digital signature are generated by utilizing Exponential based Extensible Output Functions (EX-EOF) and Double Mod-Digital Signature Algorithm (DM-DSA). Concurrently, the files are encrypted by employing MI-CRYSTAL-Kyber techniques. Lastly, the doctor logs on to the system, and hash code and digital signature verification are performed. The system allows the doctor to download the data if the verification matches. Also, the experimental assessment was validated, which shows the proposed technique’s efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call