Abstract

The cyclic nucleotide cGMP is an important intracellular messenger for synaptic plasticity and memory function in rodents. Therefore, inhibition of cGMP degrading phosphodiesterases, like PDE9A, has gained interest as potential target for treatment of cognition deficits in indications like Alzheimer's disease (AD). In fact, PDE9A inhibition results in increased hippocampal long-term potentiation and exhibits procognitive effects in rodents. To date, however, no evidence has been published linking PDE9A inhibition to the pathologic hallmarks of AD such as amyloid beta (Aβ) deposition. Therefore, we investigated the role of PDE9A inhibition in an AD relevant context by testing its effects on Aβ-related deficits in synaptic plasticity and cognition. The PDE9A inhibitor BAY 73-6691 was found to restore long-term potentiation impaired by Aβ42 oligomers. Furthermore, we demonstrated that BAY 73-6691 enhanced cGMP levels in the hippocampus of APP transgenic tg2576 mice and improved memory performance of these mice. Altogether, our results support the hypothesis that inhibition of PDE9A could be a beneficial approach for the treatment of memory impairment in AD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.