Abstract

Cerebral ischemia is one of leading causes of death and long-term disability worldwide. Stem cell-based therapy is promising some valuable strategies for the structural and functional recovery after ischemic insult. The inhibition of phosphodiesterases (PDEs) has wide spectrum neuroprotective properties by stimulating proliferation of neural stem cells (NSCs). However, the potential role of PDE9 on NSCs proliferation after cerebral ischemia is not well investigated. The present study aimed to assess the contribution of PDE9 inhibition on the proliferation of NSCs and to determine the details of its underlying mechanisms against cerebral ischemia. The survival and proliferation of NSCs were assessed by CCK-8 assay and BrdU immunofluorescence staining, respectively. PDE9 activity and cGMP level were measured by ELISA kits. The protein expression of PKG and BDNF was detected by Western blot. Exposing NSCs of cultured primary hippocampus to oxygen-glucose deprivation/reoxygenation (OGD/R) significantly decreased the survival rate, but increased the proliferation of NSCs. Meanwhile, PDE9 activity was decreased, cGMP level was increased, PKG and BDNF protein expression was increased. PF-04447953, a PDE9 inhibitor, increased the survival rate of NSCs, moreover, PDE9 activity reduced more, and NSCs proliferation, cGMP level, PKG and BDNF protein expression were increased further, compared with OGD/R model group. These effects of PF-04447953, except for PDE9 activity and cGMP level, were reversed by treatment with KT5823, a PKG inhibitor. Taken together, the inhibition of PDE9 can promote the proliferation of NSCs following OGD/R injury, which may be, at least partly, mediated by cGMP-PKG pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.