Abstract
Photoreceptor rod and cone phosphodiesterases comprise the sixth family of cyclic nucleotide phosphodiesterases (PDE6). PDE6s have uniquely evolved as effector enzymes in the vertebrate phototransduction cascade. To understand the evolution of the PDE6 family, we have examined PDE6 in lamprey, an ancient vertebrate group. A single PDE6 catalytic subunit transcript was found in the sea lamprey Petromyzon marinus cDNA library. The lamprey PDE6 sequence showed a high degree of homology with mammalian PDE6 and equally distant relationships with the rod and cone enzymes. In contrast, two different PDE6 inhibitory Pgamma subunits, a cone-type Pgamma1 and a mixed cone/rod-type Pgamma2, have been identified in the lamprey retina. Immunofluorescence analysis demonstrated that Pgamma1 and Pgamma2 are expressed in the long and short photoreceptors of sea lamprey, respectively. The catalytic PDE6 subunit was present in the photoreceptors of both types and colocalized with the Pgamma subunits. Recombinant Pgamma1 and Pgamma2 potently inhibited trypsin-activated lamprey and bovine PDE6 enzymes. Our results point to a high degree of conservation of PDE6 genes during the vertebrate evolution. The apparent duplication of the Pgamma gene in the stem of vertebrate lineage may have been an essential component of the evolution of scotopic vision in early vertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.