Abstract

In recent years, grid technology has had such a fast growth that it has been used in many scientific experiments and research centers. A large number of storage elements and computational resources are combined to generate a grid which gives us shared access to extra computing power. In particular, data grid deals with data intensive applications and provides intensive resources across widely distributed communities. Data replication is an efficient way for distributing replicas among the data grids, making it possible to access similar data in different locations of the data grid. Replication reduces data access time and improves the performance of the system. In this paper, we propose a new dynamic data replication algorithm named PDDRA that optimizes the traditional algorithms. Our proposed algorithm is based on an assumption: members in a VO (Virtual Organization) have similar interests in files. Based on this assumption and also file access history, PDDRA predicts future needs of grid sites and pre-fetches a sequence of files to the requester grid site, so the next time that this site needs a file, it will be locally available. This will considerably reduce access latency, response time and bandwidth consumption. PDDRA consists of three phases: storing file access patterns, requesting a file and performing replication and pre-fetching and replacement. The algorithm was tested using a grid simulator, OptorSim developed by European Data Grid projects. The simulation results show that our proposed algorithm has better performance in comparison with other algorithms in terms of job execution time, effective network usage, total number of replications, hit ratio and percentage of storage filled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.