Abstract

Noble metal aerogels with unique porous structure have demonstrated tremendous potentials in electrocatalysis due to its excellent electrical conductivity, large specific surface area, high porosity, and prominent activity. However, the traditional two-step synthetic method is time-consuming and complicated, limiting its development and application. In this work, we synthesized Pd-CoOx aerogels simply and quickly by in situ electrochemical reduction strategy without additional organic ligands. Interestingly, introducing Co to form composite aerogels significantly improved the catalytic performance of Pd due to the synergy between Pd and Co. The optimized Pd3-(CoOx)1 aerogel exhibited excellent electrocatalytic activities in alcohol oxidations after the in situ electrochemical activation. Specifically, the mass activities of the Pd3-(CoOx)1 aerogel for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) reached 4.94 A mgPd−1 and 8.67 A mgPd−1, respectively, which are 10.5 times and 7.4 times higher than those of the commercial Pd/C. These findings may offer a facile synthetic strategy for composite aerogel catalysts with high electrocatalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call