Abstract

Programmed cell death 4 (PDCD4) is a tumor suppressor gene, however, the function and regulatory mechanism remain to be discovered. The connection between tumorigenesis and apoptosis is one of the most important foci of cancer research. Our study aimed to explore the connections between PDCD4-mediated apoptosis of human peritoneal mesothelial cells (HPMC) and peritoneal metastasis in gastric cancer. The PDCD4 expression in 31 pairs of HPMC and tumor tissues was assessed by immunohistochemistry and RT-PCR. In cell experiments, we monitored gastric cancer cell migration with a Transwell chamber assay when PDCD4 was silenced in HPMC. Subsequently, apoptosis of HPMC was detected by a flow cytometric assay and western blotting. After analyzing cytokines in culture supernatants from gastric cancer with enzyme-linked immunosorbent assays (ELISAs), transforming growth factor-beta 1 (TGF-β1) was abundant in the culture supernatants of gastric cancer. Then, PDCD4 expression in HMrSV5 cells was analyzed by western blotting after retreatment with different concentrations of TGF-β1. Moreover, apoptosis of peritoneal mesothelial cells treated with TGF-β1 was detected according to the above methods. In human metastatic peritoneal tissues, the expression of PDCD4 was significantly lower than that in normal tissues. At the same time, decreased expression of PDCD4 in HPMC was associated with increased migration capacity of gastric cancer cells. Moreover, suppressing the expression of PDCD4 promoted apoptosis in mesothelial cells which may be regulated by TGF-β secreted from gastric cancer cells. These data suggested that decreased expression of PDCD4 significantly promoted apoptosis in human peritoneal mesothelial cells, thus inducing peritoneal metastasis, and that TGF-β1 secreted from gastric cancer cells may have played a crucial role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call