Abstract

ObjectivesDysregulation of immune cells in the tumor microenvironment is a hallmark of head and neck squamous cell carcinoma (HNSCC). Increased infiltration of pDCs has been reported in the microenvironment of HNSCC. However, the precise immunological role of pDC and the therapeutic effects of pDC depletion in HNSCC need to be further investigated. Materials and methodsCD317 antibodies were applied for depleting pDCs in an immunocompetent transgenic HNSCC mouse model. Tumor volume was monitored. Flow cytometric analysis was conducted for studying the immune profile changes after pDC depletion. In addition, immunohistochemical staining was carried out in a human HNSCC tissue microarray for detecting the infiltration of pDCs. We also analyzed the survival implication of pDCs and its correlation with other immune related markers in human HNSCC. ResultspDC depletion in the transgenic HNSCC mouse model significantly delayed tumor growth. After pDCs were depleted, T cells were markedly revitalized, and the proportions of regulatory T cells (Tregs) and monocytic myeloid-derived suppressor cells (MDSCs) were decreased. In human HNSCC microenvironment, pDC infiltration was upregulated and its high infiltration conferred a poor prognosis. Moreover, pDC infiltration was closely correlated with the expression of Foxp-3, PD-1, TIM-3, and LAG-3. ConclusionOur findings demonstrated that pDCs play a negative immunomodulatory role in HNSCC and may present as a target for effective immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call