Abstract

Proteins typically exert their biological functions by interacting with other biomolecules or ligands. The study of ligand-protein interactions is crucial in elucidating the biological mechanisms of proteins. Most existing studies have focused on analyzing ligand-protein interactions, and they ignore the additional situational of inserted and modified residues. Besides, the resources often support only a single ligand type and cannot obtain satisfied results in analyzing novel complexes. Therefore, it is important to develop a general analytical tool to extract the binding residues of ligand-protein interactions in complexes fully. In this study, we propose a ligand-protein interaction binding residue extractor (PDB-BRE), which can be used to automatically extract interacting ligand or protein-binding residues from complex three-dimensional (3D) structures based on the RCSB Protein Data Bank (RCSB PDB). PDB-BRE offers a notable advantage in its comprehensive support for analyzing six distinct types of ligands, including proteins, peptides, DNA, RNA, mixed DNA and RNA entities, and non-polymeric entities. Moreover, it takes into account the consideration of inserted and modified residues within complexes. Compared to other state-of-the-art methods, PDB-BRE is more suitable for massively parallel batch analysis, and can be directly applied for downstream tasks, such as predicting binding residues of novel complexes. PDB-BRE is freely available at http://bliulab.net/PDB-BRE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.