Abstract

Al 2O 3 hollow fibres with different asymmetric macrostructures, i.e. various thickness ratios between a finger-like layer and a sponge-like layer, have been prepared by a phase inversion/sintering technique. Such asymmetric hollow fibres are used as substrates on which Pd membrane is deposited directly by an electroless plating (ELP) technique without any pre-treatment on substrate surface. Influences of the substrate macrostructure on hydrogen permeation through the Pd/Al 2O 3 composite membranes have been investigated both experimentally and theoretically. The hydrogen permeation through the Pd/Al 2O 3 composite membranes was not only determined by the Pd membrane thickness, but also by the macrostructural parameters of the substrate, such as effective porosity, mean pore size and pore size distribution etc. The thinner the Pd membrane, the higher the effective porosity is required to alleviate the substrate effect on the hydrogen permeation. Also, the deviation of the pore size is suggested to be around 1.2 for the further improved hydrogen permeation through the composite hollow fibre membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.