Abstract

This paper deals with the 3-D biped walking of a humanoid type robot over rough terrain. We previously proposed efficient 3-D biped walking control using Passive Dynamic Autonomous Control (PDAC) based on the assumption of point-contact and virtual holonomic constraint of robot joints. Walking adaptability has not, however, been analyzed. We thus analyze the environmental adaptability of PDAC-based walking method in this paper. The robot is modeled as a variable-length 3-D inverted pendulum whose dynamics is modeled as a 2-D autonomous system by applying PDAC. We analyze the stability of the 2-D autonomous system using a Poincaré map and derive the stable range of uneven height over rough terrain. We then experimentally validate 3-D biped walking on unknown rough terrain using our humanoid type robot, Gorilla Robot III.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.