Abstract

Tungsten oxide nanoparticles were fabricated by a pulsed laser ablation method in deionized water using the first harmonic of a Nd:YAG laser (λ=1064 nm) at three different laser pulse energies (E1 =160, E2 =370 and E3 =500 mJ/pulse), respectively. The aim is to investigate the effect of laser pulse energy on the size distribution and gasochromic property of colloidal nanoparticles. The products were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. The results indicated that WO3 nanoparticles were formed. After ablation, a 0.2 g/l PdCl2 solution was added to activate the solution against hydrogen gas. In this process Pd2+ ions were reduced to deposit fine metallic Pd particles on the surface of tungsten oxide nanoparticles. The gasochromic response was measured by H2 and O2 gases bubbling into the produced colloidal Pd–WO3. The results indicate that the number of unreduced ions (Pd2+) decreases with increasing laser pulse energy; therefore, for colloidal nanoparticles synthesized at the highest laser pulse energy approximately all Pd2+ ions have been reduced. Hence, the gasochromic response for this sample is nearly reversible in all cycles, whereas those due to other samples are not reversible in the first cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.