Abstract
Transition-metal catalysed enantioselective CâH functionalisations enable rapid increase of molecular complexity via non-classical disconnections. This thesis describes the development of intramolecular Pd(0)-catalysed C-H functionalisations for the asymmetric synthesis of relevant N-heterocyclic scaffolds. Dihydroisoquinolinones were prepared by arylation of corresponding cyclopropane-containing bromobenzamides. Using the cyclopropane arylation approach, an expedient enantioselective route to the beclabuvir ring system was developed. The implementation of chloroacetamides as electrophilic partners provided an enantioselective entry toward four- and five-membered chiral lactams by functionalisation of benzylic or cyclopropane C-H bonds. Cyclisation of the trifluoroacetimidoyl chlorides afforded chiral cyclopropane-fused cyclic CF3-ketimines. The latter represent a convenient platform for the synthesis of trifluoromethylated pyrrolidines. Trifluoroacetimidoyl chlorides from toluidines delivered 2-trifluoromethyl indoles. Simple starting material synthesis coupled with the high efficiency of developed transformations establish Pd(0)-catalysed C-H cyclisations as a practical approach for the preparation of 4- to 7-membered N-heterocycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.