Abstract

Studies aimed at synthesizing surfactants from biomass-based feedstocks using Pd-catalyzed telomerization of 1,3-butadiene resulted in the development of a highly active catalyst system. A ligand screening was performed, and Pd/tris(2-methoxyphenyl)phosphine (TOMPP) was identified as the most promising catalyst. A solvent- and base-free protocol was developed, which allows efficient and selective conversion of a wide variety of polyol substrates (e.g., glycerol, diols, carbohydrates, and sugar alcohols). In the case of hemi-acetal bearing sugars, catalyst deactivation was observed and mechanistic studies showed that extensive formation of ligand-derived phosphonium species depleted the amount of available ligand. Stoichiometric coordination reactions gave insight into the phosphine alkylation mechanism and demonstrated the reversibility of the observed reaction. A simple and efficient one-pot synthesis method was developed for the preparation of [Pd((1-3,7,8η)-(E)-octa-2,7-dien-1-yl)(PR3)]+ complexes, which are key reactive intermediates. Based on these studies, an extended telomerization mechanism is proposed, which accounts for the formation of ligand-derived phosphonium species and the reversibility of reaction pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.