Abstract
Herein, the development of an improved Pd on carbon nitride catalyst for direct H2O2 synthesis from the elements is reported. Microcalorimetric CO chemisorption is used to characterize the chemical speciation of the Pd-selective and -unselective sites. Selectivity trends among the samples suggest that a bare metal surface with a differential heat of CO chemisorption ranging between 140 and 120 kJ mol–1 is responsible for the total O2 hydrogenation, while a maximum threshold value of differential heat of CO chemisorption of approximately 70 kJ mol–1 is necessary for the partial hydrogenation of O2 to H2O2. Such a low differential heat of CO chemisorption indicates a low exposed metallic Pd surface subjected to electron withdrawal from the surrounding ligands: i.e., the N functional groups on the carbon support. With respect to N-containing carbon nanotubes, carbon nitrides provide the following: a higher concentration of N sites, a flexible network of π-conjugated polymeric subunits with sp3 linking subuni...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.