Abstract

Oxyanion pollutants in industrial wasterwater, such as (Cr(VI)), BrO3− (Br(V)) and SeO32− (Se(IV)) have detrimental or toxic effects on individual health when their concentrations accumulated to a certain level. The conversion of these oxyanions into harmless/industrial-valuable products or removal from wastewater is of significance. Herein, we designed Pd sub-nanolayer on Au core catalysts supported on Al2O3 (sub-Pd-Au/Al2O3) for highly effective catalytic hydrogenation reduction of oxyanions under ambient conditions. The sub-Pd(0.049)-Au(0.927)/Al2O3 catalyst exhibited the highest catalytic activity and TOF value for Cr(VI), Br(V) and Se(IV) reduction, respectively, by optimizing the Pd loading amount. The synergistic effect between Pd sub-nanolayer and Au core enhanced catalytic activity by regulating the Pd dispersion and site property, according to thorough characterizations that included high-angle annular dark-field transmission electron microscopy (HAADF-TEM) image, in-situ CO-IR adsorption, CO chemisorption, and X-ray photoelectron spectroscopy (XPS). This work might provide some new lights on design of highly efficient catalysts for the elimination of oxyanion pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.