Abstract

Oxyanion pollutants in industrial wasterwater, such as (Cr(VI)), BrO3− (Br(V)) and SeO32− (Se(IV)) have detrimental or toxic effects on individual health when their concentrations accumulated to a certain level. The conversion of these oxyanions into harmless/industrial-valuable products or removal from wastewater is of significance. Herein, we designed Pd sub-nanolayer on Au core catalysts supported on Al2O3 (sub-Pd-Au/Al2O3) for highly effective catalytic hydrogenation reduction of oxyanions under ambient conditions. The sub-Pd(0.049)-Au(0.927)/Al2O3 catalyst exhibited the highest catalytic activity and TOF value for Cr(VI), Br(V) and Se(IV) reduction, respectively, by optimizing the Pd loading amount. The synergistic effect between Pd sub-nanolayer and Au core enhanced catalytic activity by regulating the Pd dispersion and site property, according to thorough characterizations that included high-angle annular dark-field transmission electron microscopy (HAADF-TEM) image, in-situ CO-IR adsorption, CO chemisorption, and X-ray photoelectron spectroscopy (XPS). This work might provide some new lights on design of highly efficient catalysts for the elimination of oxyanion pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call