Abstract

The Pd–Pt/Al 2O 3 bimetallic catalysts showed high activities toward the wet oxidation of the reactive dyes in the presence of 1% H 2 together with excess oxygen. Palladium was believed to act as a co-catalyst to spillover the adsorbed H 2 onto the surface of the oxidized Pt surface, and thereby the reducibility of the Pt increased greatly. The organic dye molecule adsorbed on the reduced Pt surface more easily than the oxidized Pt surface under the competition with excess oxygen, which is an essential step for the catalytic wet oxidation (CWO). The Pd–Pt/Al 2O 3 catalysts also produced H 2O 2 from H 2/O 2 mixture, and the hydroxyl radical was formed through the subsequent decomposition of H 2O 2. Additional oxidation of the reactive dyes was obtained with hydroxyl radical. The high activities of the Pd–Pt/Al 2O 3 catalysts were believed to be due to the combined effects of the faster redox cycle resulting from the increased reducibility of Pt surface and the additional oxidation of the reactive dyes with hydroxyl radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.