Abstract

Novel Pd-Ni alloy nanoparticle/carbon nanofiber (Pd-Ni/CNF) composites were successfully prepared by a simple method involving electrospinning of precursor polyacrylonitrile/Pd(acac)2/Ni(acac)2 nanofibers, followed by a thermal process to reduce metals and carbonize polyacrylonitrile. The nanostructures of the resulting Pd-Ni/CNF nanocomposites were carefully examined by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). For all the nanocomposites, the Pd-Ni alloy nanoparticles (NPs) were dispersed uniformly and embedded firmly within the framework or on the surface of CNF. The size, composition, and alloy homogeneity of the Pd-Ni alloy NPs could be readily tailored by controlling the feed ratio of metal precursors and the thermal treatment process. Cyclic voltammetric studies showed enhanced redox properties for Pd-Ni/CNF-based electrodes relative to the Ni-metal electrode and significantly improved electrocatalytic activity for sugar (e.g., glucose, fructose, sucrose, and maltose) oxidation. The application potential of Pd-Ni/CNF-based electrodes in flow systems for sugars detection was explored. A very low limit of detection for sugars (e.g., 7-20 nM), high resistance to surface fouling, excellent signal stability and reproducibility, and a very wide detection linear range (e.g., 0.03-800 μM) were revealed for this new type of Pd-Ni/CNF nanocomposite as the detecting electrode. Such detection performances of Pd-Ni/CNF-based electrodes are superior to those of state-of-the-art nonenzymatic sugar detectors that are commercially available or known in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.