Abstract

The large amount of 4-nitrophenol (4-NP) wastewater produced by the chemical industry has received increased concern over the growing risk of environmental pollution. The ability to catalyze the reduction of highly concentrated 4-NP wastewater is highly desirable for the practical treatment of industrial wastewater, yet it remains a significant challenge. Herein, we report Pd nanoparticle-decorated 3D-printed hierarchically porous TiO2 scaffolds (Pd/TiO2 scaffolds) for the efficient reduction of highly concentrated 4-NP wastewater (2 g·L-1, ∼14.38 mM). The millimeter-sized interconnected channels in the scaffolds are conducive to rapid mass and ion transportation; meanwhile, the abundant micrometer- and nanometer-sized pores on the surface of the scaffolds offer adequate anchoring sites for Pd nanoparticles. The turnover frequency of the hierarchically porous Pd/TiO2 scaffold (16 layers) is up to 2.69 min-1, which is 1063 times higher than that of the Pd/TiO2-bulk material with the same size (0.00253 min-1). Importantly, no obvious deactivation of the catalytic activity is observed even after 20 cycles of catalytic reduction of 4-NP, showing excellent catalytic stability and reusability. Our strategy of loading the nanostructured catalyst on 3D-printable hierarchically porous structures put forward a flexible and versatile approach for boosting the catalytic performance of the catalysts, including catalytic activity, stability, and reusability, which can help promote their practical application in industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call