Abstract

Masses of iron sludge generated from engineering practice of classic Fenton reaction constraints its further promotion. Accelerating the FeIII/FeII cycle may be conducive to reducing the initial ferrous slat dosage and the final iron sludge. Based on the reduction of Pd/MIL-100(Fe)-activated hydrogen, an improved Fenton system named MHACF-MIL-100(Fe) was developed at ambient temperature and pressure. 97.8% of sulfamethazine, the target pollutant in this work, could be degraded in 5 min under the conditions of 20 mM H2O2, 25 μM ferrous chloride, initial pH 3.0, 2 g·L-1 composite catalyst Pd/MIL-100(Fe), and hydrogen gas 60 mL·min-1. Combining density functional theory (DFT) calculation and intermediate detection, the degradation of this antibiotic was inferred to start from the cleavage of N-S bond. The catalytic of Pd/MIL-100(Fe), demonstrated by removal efficiency of SMT and the catalyst morphology, remained intact after 6 reaction cycles. The present study provides an insight for the promotion of Fenton reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.