Abstract

Industrial ammonia production is usually carried out under conditions of high temperature and pressure, which is energy-intensive and causes environmental pollution. Current materials used for catalytic nitrogen reduction have drawbacks such as slow reaction kinetics and being prone to hydrogen evolution. How to improve the reaction rate and Faraday efficiency has become an urgent problem. In this paper, a new ultra-thin two-dimensional conductive material Ti3C2 MXene was used as the substrate, on which the Pd2+ ions were loaded, and could be reduced to Pd. The composite Pd@Ti3C2 with different Pd contents were prepared. The performance of the Pd particles on the surface of the two-dimensional Ti3C2 nanosheets was tested. The results showed that the nanoscaled Pd could promote the reduction of nitrogen. When the addition ratio of Pd was 5%, the compound showed the best performance and good stability. The doping of Pd can improve the nitrogen reduction performance of Ti3C2 nanosheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call