Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor due to the lack of effective therapeutic drugs. Cancer therapy targeting programmed cell death protein 1 (PD-1) or programmed death ligand-1 (PD-L1) is of revolutionary. However, the role of intrinsic PD-L1, which determines immune-therapy outcomes, remains largely unclear. Here we demonstrated an oncogenic role of PD-L1 via binding and activating Ras in GBM cells. RNA-sequencing transcriptome data revealed that PD-L1 significantly altered gene expression enriched in cell growth/migration/invasion pathways in human GBM cells. PD-L1 overexpression and knockout or knockdown demonstrated that PD-L1 promoted GBM cell proliferation and migration in vitro and in vivo. Mechanistically, PD-L1 prominently activated epithelial mesenchymal transition (EMT) process in a MEK/Erk- but not PI3K/Akt-dependent manner. Further, we identified intracellular interactions of PD-L1 and H-Ras, which led to Ras/Erk/EMT activation. Finally, we demonstrated that PD-L1 overexpression promoted while knockdown abolished GBM development and invasion in orthotopic GBM models of rodents. Taken together, we found that intracellular PD-L1 confers GBM cell malignancy and aggressiveness via binding Ras and activating the downstream Erk-EMT signaling. Thus, these results shed important insights in improving efficacy of immune therapy for GBM as well as other malignant tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.