Abstract

A porous magnetic multifunctional copper-based metal-organic framework (MOF) was developed through combined covalent and dative post-synthetic modification (PSM) of the CuBDC. In this regard, a novel magnetic metal-organic framework (MMOF) consisting of supported 1,10-phenanthroline-2,9-dicarbaldehyde (Fe3O4@Cu(BDC)-NH2-PHD) has been fabricated by post-synthetic modifications of Fe3O4@Cu(BDC)-NH2. Subsequently, the prepared nanocomposites were modified using palladium chloride ions (Fe3O4@Cu(BDC)-NH2-PdPHD) to impart catalytic sites. As a result, the fabricated magnetic porous catalyst exhibited great catalytic activity in Suzuki-Miyaura cross-coupling reactions. Some of the essential advantages of the synthesized catalyst are; high catalytic activity, short reaction times, mild conditions, high thermal stability, and reusability. Moreover, his porous magnetic nanomaterial can be used as a new support to immobilize other metals in different catalytic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call