Abstract
Dipyrromethenes containing two pyrrole rings connected by one meso-carbon are versatile monoanionic bidentate ligands and form coordination complexes with many metals/nonmetals/metalloids. Dipyrroethenes containing one additional meso-carbon compared to dipyrromethenes have more space between coordinating pyrrole nitrogens and provide a good coordination environment but have not been explored as ligands in coordination chemistry. Dipyrroethenes are dianionic bidentate ligands and by suitable modifications, the coordination environment of dipyrroethenes can be changed further. Herein, we successfully synthesized α,α'-ditolylmethanone dipyrroethene which is a bipyrrolic tetradentate ligand with an ONNO ligand core and used it for the synthesis of novel Pd(II), Ni(II), and Cu(II) metal complexes by treating it with respective metal salts in CH2Cl2/CH3OH at room temperature. The X-ray crystallographic structure of the metal complexes showed that the M(II) ion was coordinated to the ONNO atoms of the ligand in a perfect square planar geometry. The NMR studies of Pd(II) and Ni(II) complexes also supported the highly symmetric nature of the metal complexes. The absorption spectra of the metal complexes showed strong bands in the region of 300-550 nm. The electrochemical studies of metal complexes revealed that only ligand-based oxidation and reduction were observed. The DFT and TD-DFT studies were in agreement with the experimental observations. Our preliminary studies indicated that the Pd(II) complex can be used as a catalyst for the Fujiwara-Moritani olefination reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.