Abstract

Glucose degradation products (GDPs) in peritoneal dialysis (PD) fluids are cytotoxic and affect the survival of the peritoneal membrane. One of the most reactive GDPs in PD fluids is 3,4-dideoxyglucosone-3-ene (3,4-DGE). 3,4-DGE has been reported as an intermediate between 3-deoxyglucosone (3-DG) and 5-hydroxymethyl furaldehyde (5-HMF) during degradation of glucose. In PD fluids, 3,4-DGE exists in a temperature-dependent equilibrium with a pool of unidentified substances. The aim of this study was to explore this equilibrium and its temperature dependence during the first months of storage after the sterilization procedure. GDPs and inhibition of cell growth (ICG) were measured directly after sterilization of the PD fluid and during storage at different temperatures for 60 days. The following GDPs were analyzed: 3-DG, 3,4-DGE, 5-HMF, formaldehyde, acetaldehyde, glyoxal, and methylglyoxal. Immediately after sterilization, the concentration of 3,4-DGE was 125 micromol/L. During the first weeks of storage, it decreased by about 80%. At the same time, the 3-DG concentration increased. None of the other GDPs were significantly affected. Cytotoxicity correlated well with the concentration of 3,4-DGE. When pure 3,4-DGE was substituted for the lost amount of 3,4-DGE after 30 days of storage, the initial ICG was almost completely regained. Heat sterilization of PD fluids promotes the formation of large quantities of 3,4-DGE, rendering the fluid highly cytotoxic. During storage, the main part of 3,4-DGE is reversibly converted in a temperature-dependent manner to a less cytotoxic pool, consisting mainly of 3-DG. Cytotoxicity seems to be dependent exclusively on 3,4-DGE. In order to avoid higher levels of 3,4-DGE concentrations, PD fluids should not be used too soon after sterilization and should not be stored at temperatures above room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call