Abstract

The problem of reducing a multi input-multi output system to many single input-single output systems, namely the problem of input-output decoupling, is studied for the case of singular systems i.e., for systems described by dynamic and algebraic equations. The problem of input-output decoupling with simultaneous arbitrary pole assignment, via proportional plus derivative (P-D) state feedback, is extensively solved. The general explicit expression of all P-D controllers solving the decoupling problem is determined. The general form of the diagonal elements of the decoupled closed-loop system is proven to be in a form having a fixed numerator polynomial and an arbitrary denominator polynomial. The necessary and sufficient conditions for the solvability of the problem of decoupling with simultaneous asymptotic stabilizability or arbitrary pole assignment are established. Furthermore, the necessary and sufficient conditions for decoupling with simultaneous impulse elimination, as well as the necessary and sufficient conditions for decoupling with arbitrary assignment of the finite and infinite poles of the closed-loop system, are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.