Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) to high value-added products, such as ethylene (C2H4), offers a promising approach to achieve carbon neutrality. Although recent studies have reported that a tandem catalyst (for example, Cu-Ag systems) exhibits advantage in C2H4 production, its practical application is largely inhibited by the following: (1) a traditional tandem catalyst cannot effectively stabilize the *CO intermediate, resulting in sluggish C-C coupling, and (2) inadequate H2O activation ability hinders the hydrogenation of intermediates. To break through the above bottleneck, herein, palladium (Pd) was introduced into Cu2O-Ag, a typical conventional tandem catalyst, to construct a Cu2O-Pd-Ag ternary catalyst. Extensive experiment and density functional theory calculation prove that Pd can efficiently stabilize the *CO intermediate and promote the H2O activation, which contributes to the C-C coupling and intermediate hydrogenation, the key steps in the conversion of CO2 to C2H4. Beneficial to the efficient synergy of Cu2O, Pd, and Ag, the optimal Cu2O-Pd-Ag ternary catalyst achieves CO2RR toward C2H4 with a faradaic efficiency of 63.2% at -1.2 VRHE, which is higher than that achieved by Cu2O-Ag and most of other reported catalysts. This work is a fruitful exploration of a rare ternary catalyst, providing a new route for constructing an efficient CO2RR electrocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.