Abstract

Properties of Pd–Cu/Al2O3 catalysts prepared using PdCu(CH3CO2)4 acetate heteronuclear complexes as precursors in the liquid-phase diphenylacetylene (DPA) hydrogenation have been studied. It has been established that the reaction over the Pd–Cu/Al2O3 catalyst proceeds more selectively than over the commercial Lindlar catalyst; in addition, high activity is achieved at a substantially lower palladium content. The maximum selectivity of DPA hydrogenation is observed with the catalyst reduced in a hydrogen atmosphere without any intermediate calcination that can result in the destruction of the bimetallic acetate complex. FTIR spectroscopy data for adsorbed CO show that the high selectivity of hydrogenation is due to the formation of homogeneous Pd–Cu particles and to the absence of monometallic palladium particles. This can be explained by the retention of the initial complex structure at all of the catalyst preparation stages until the formation of bimetallic particles during hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.