Abstract
For the trajectory following problem of an airship, the standard computed torque control law is shown to be robust with respect to unknown dynamics by judiciously choosing the feedback gains and the estimates of the nonlinear dynamics. In the first part of this paper, kinematics and dynamics modeling of the airships is presented. Euler angles and parameters are used in the formulation of this model and the technique of Computed Torque control is introduced. In the second part of the paper, we develop a methodology of control that allows the airship to accomplish a prospecting mission of an environment, as the follow-up of a trajectory by the simulation who results show that Computed Torque control method is suitable for airships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Robotics and Automation (IJRA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.