Abstract

Our previous study demonstrated that transfusion of ultraviolet B-irradiated immature dendritic cells (UVB-iDCs) induced alloantigen-specific tolerance between two different strains of mice. Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have been suggested to play an important role in maintaining immune tolerance. In the present study, we seek to address whether PD-1/PD-L1 plays a role in the maintenance of UVB-iDC-induced tolerance. We first observe that the UVB-iDC-induced alloantigen-specific tolerance can be maintained for over 6 weeks. Supporting this, at 6 weeks after tolerance induction completion, alloantigen-specific tolerance is still able to be transferred to syngeneic naïve mice through adoptive transfer of CD4+ T cells. Furthermore, skin transplantation study shows that the survival of allogeneic grafts is prolonged in those tolerant recipients. Further studies show that PD-1/PD-L1 interaction is essential for maintaining the induced tolerance as blockade of PD-1/PD-L1 by anti-PD-L1 antibodies largely breaks the tolerance at both cellular and humoral immunological levels. Importantly, we show that PD-1/PD-L1 interaction in tolerant mice is also essential for controlling alloantigen-responding T cells, which have never experienced alloantigens. The above findings suggest that PD-1/PD-L1 plays a crucial role in maintaining immune tolerance induced by UVB-iDCs, as well as in actively controlling effector T cells specific to alloantigens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.