Abstract
Small-for-size syndrome following liver surgery is characterized by compromised liver regeneration. Liver macrophages play key roles in initiating liver regeneration, and modulation of the immune microenvironment through macrophages may accelerate liver regeneration. In our current study, we aimed to explore the involvement of innate immunity after extended hepatectomy in rats and humans, and to test the effect of immunity modulation on small-for-size liver regeneration in rats. Serum programmed cell death protein ligand 1 (PD-L1) was measured after major hepatectomy and minor hepatectomy in humans and rats. Liver regeneration in rats was assessed using liver-to-body weight ratio and kinetic growth rate, antigen Ki67 and proliferating cell nuclear antigen (PCNA), and macrophage polarization was assessed by inducible nitric oxide synthase (iNOS), cluster of differentiation protein 163 (CD163) expression by immunohistochemistry (IHC) and iNOS/CD163 ratio. Rat hepatocyte BRL or human hepatocyte LO2 were co-cultured with rat bone marrow-derived macrophages or human macrophages THP-1. BMS-1 or Nivolumab were used to block programmed cell death protein 1 (PD-1)/PD-L1 in vitro and in vivo. PD-L1 expressions were significantly higher following major hepatectomy compared to minor resection in both humans and rats; compromised liver regeneration after extended hepatectomy in rats was associated with PD-L1 upregulation and M2 macrophage polarization. M1 macrophages increased proliferation of hepatocytes through interleukin-6 (IL-6), and M2 macrophages decreased hepatocyte proliferation; blocking PD-1/PD-L1 reversed the effect of M2 macrophages on the survival of hepatocytes in vitro and promoted liver growth in rats through M1 macrophage polarization. Compromised hepatic regeneration following extended hepatectomy is characterized by M2 macrophage polarization and upregulated PD-L1 expression. Blocking PD-1/PD-L1 may enhance small-for-size liver regeneration by inducing M1 macrophage polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.