Abstract

A porcine circovirus type 2 SPOT (PCV2-SPOT) assay was established to enumerate virus-secreting lymphocytes obtained from naturally infected pigs. The assay is based on the same principle as general ELISPOT assays but instead of detecting cytokine or immunoglobulin secretion, PCV2 particles are immobilized and detected as filter spots. The method was used to evaluate the influence of various cell activators on the PCV2 secretion in vitro and was also applied to study the PCV2 secretion by lymphocytes obtained from pigs in healthy herds and in a herd afflicted by postweaning multisystemic wasting disease (PMWS). Peripheral blood mononuclear cells (PBMCs) obtained from a pig with severe PMWS produced PCV2-SPOTs spontaneously whereas PBMCs obtained from pigs infected subclinically only generated PCV2-SPOTs upon in vitro stimulation. The PCV2 secretion potential was related to the PCV2 DNA content in the PBMCs as determined by two PCV2 real-time PCR assays, developed to differentiate between Swedish PCV2 genogroups 1 (PCV2a) and 3 (PCV2b). Besides the current application these qPCRs could simplify future epidemiological studies and allow genogroup detection/quantitation in dual infection experiments and similar studies. The developed PCV2-SPOT assay offers a semi-quantitative approach to evaluate the potential of PCV2-infected porcine cells to release PCV2 viral particles as well as a system to evaluate the ability of different cell types or compounds to affect PCV2 replication and secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.