Abstract

Acute respiratory distress syndrome (ARDS) is a lethal clinical syndrome characterized by damage of the epithelial barriers and accumulation of pulmonary edema fluid. Protectin conjugates in tissue regeneration 1 (PCTR1), an endogenously produced lipid mediator, arebelieved to exert anti-inflammatory and pro-resolution effects. PCTR1 (1 µg/kg) was injected at 8 hr after lipopolysaccharide (LPS; 14 mg/kg) administration, and the rate of pulmonary fluid clearance was measured in live rats at 1 hr after PCTR1 treatment. The primary type II alveolar epithelial cells were cultured with PCTR1 (10 nmol/ml) and LPS (1 μg/ml) for 8 hr. PCTR1 effectively improved pulmonary fluid clearance and ameliorated morphological damage and reduced inflammation of lung tissue, as well as improved the survival rate in the LPS-induced acute lung injury (ALI) model. Moreover, PCTR1 markedly increased sodium channel expression as well as Na, K-ATPase expression and activity in vivo and in vitro. In addition, PCTR1i also upregulated the expression of LYVE-1 in vivo. Besides that, BOC-2, HK7, and LY294002 blocked the promoted effect of PCTR1 on pulmonary fluid clearance. Taken together, PCTR1 upregulatessodium channels' expression via activating the ALX/cAMP/P-Akt/Nedd4-2 pathway and increases Na, K-ATPase expressionand activity to promote alveolar fluid clearance. Moreover, PCTR1 also promotes the expression of LYVE-1 to recover the lymphatic drainage resulting in the increase of lung interstitial fluid clearance. In summary, these results highlight a novelsystematic mechanism for PCTR1 in pulmonary edema fluid clearance after ALI/ARDS, suggesting its potential rolein a therapeutic approach for ALI/ARDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call