Abstract

Recent approaches based on convolutional neural networks significantly improve the performance of structured light image depth estimation in fringe projection and speckle projection 3D measurement. However, it remains challenging to simultaneously preserve the global structure and local details of objects for the structured light images in complex scenes. In this paper, we design a parallel CNN-transformer network (PCTNet), which consists of a CNN branch, a transformer branch, a bidirectional feature fusion module (BFFM), and a cross-feature multi-scale fusion module (CFMS). The BFFM and CFMS modules are proposed to fuse local and global features of the double branches in order to achieve better depth estimation. Comprehensive experiments are conducted to evaluate our model on four structured light datasets, i.e. our established simulated fringe and speckle structured light datasets, and public real fringe and speckle structured light datasets. Experiments demonstrate that the proposed PCTNet is an effective architecture, achieving state-of-the-art performance in both qualitative and quantitative evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.