Abstract

Trigger systems are becoming increasingly important in pulsed power systems with large numbers of high voltage switches (HVSs) or large numbers of different switching times. Performance can be critical with demands for fast rise-times, sub-nanosecond jitter, and long lifetimes. In particular component lifetimes affect maintenance costs and the available operational time of the system. High gain photoconductive semiconductor switches (PCSSs) deliver many of the desired properties including optical-isolation, 350 ps risetime, 100 ps rms jitter, scalability to high power (220 kV and 8 kA demonstrated), and device lifetimes up to 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</sup> shots with 21 A per filament in 5 ns wide pulses [1], [2]. However, higher current and longer pulse applications can drastically reduce device lifetime. For typical single shot pulsed power applications, lifetimes of several thousand shots are required and much longer-lived HVSs are required for repetitive pulsed power applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call