Abstract

Septic shock is the most common cause of death in intensive care units, and no effective treatment is available at present. Lipopolysaccharide (LPS) is the primary mediator of Gram-negative sepsis by inducing the production of macrophage-derived proinflammatory cytokines, in which activation of nuclear factor-kappaB (NF-kappaB) plays an important role. PC-SPES is an eight-herb mixture active against a variety of malignancies, including prostate cancer and leukemia. In this study, we demonstrated that PC-SPES inhibited the LPS-induced NF-kappaB reporter activity in RAW264.7 macrophages. Electrophoretic mobility shift assay showed that PC-SPES inhibited the binding of NF-kappaB to specific DNA sequences; however, it did not affect either degradation of inhibitory kappaBalpha or nuclear translocation of NF-kappaB. Also, we explored the effect of PCSPES on LPS-induced mitogen-activated protein (MAP) kinase signaling; PC-SPES did not affect LPS-induced phosphorylation of MAP kinases, including c-Jun NH2-terminal kinase, p38, and extracellular signal-regulated kinase 1/2. Moreover, PC-SPES decreased the production of proinflammatory cytokines and inducible enzymes, such as tumor necrosis factor (TNF) alpha, interleukin (IL)-1beta, IL-6, cyclooxygenase-2, as well as inducible nitric-oxide synthase in RAW264.7 macrophages and peritoneal macrophages from C57BL/6 mice after the cells were stimulated by either LPS or LPS and interferon-gamma. Furthermore, PC-SPES rescued C57BL/6 mice from death caused by LPS-induced septic shock in conjunction with decreased serum levels of TNFalpha and IL-1beta. Together, PC-SPES is a potent inhibitor of NF-kappaB and might be useful for the treatment of sepsis and inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call