Abstract

e15039 Background: Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapy to treat hypercholesterolaemia and related cardiovascular diseases. Evolocumab, a PCSK9 inhibitor, reduced the risk of cardiovascular events in patients with atherosclerotic cardiovascular diseases when added to maximally tolerated statin therapy (± ezetimibe), and recent data from the ODYSSEY OUTCOMES trial indicate that alirocumab added to maximally tolerated statin therapy (± other lipid-lowering drugs) reduces the risk of cardiovascular events in patients with a recent acute coronary syndrome. Methods: Human fetal cardiomyocytes (HFC cell line), human HER2+ breast cancer cells were exposed to subclinical concentration of doxorubicin, trastuzumab, sequential treatment of both (all 100 nM), alone or in combination with evolocumab (50 nM) for 24 and 48h. After the incubation period, we performed the following tests: determination of cell viability, through analysis of mitochondrial dehydrogenase activity, study of lipid peroxidation (quantifying cellular Malondialdehyde and 4-hydroxynonenal), intracellular Ca2+ homeostasis. Moreover, pro-inflammatory studied were also performed (activation of NLRP3 inflammasome; expression of TLR4/MyD88; mTORC1 Fox01/3a; transcriptional activation of p65/NF-κB and secretion of cytokines involved in cardiotoxicity (Interleukins 1β, 8, 6). Results: Evolocumab co-incubated with doxorubicin alone or in sequence with trastuzumab exerts cardioprotective effects, enhancing cell viability of 35-43% compared to untreated cells (p < 0,05 for all); in cardiomyocytes Evolocumab reduced significantly the cardiotoxicity through MyD88/NF-KB/cytokines axis and mTORC1 Fox01/3α mediated mechanisms. In human HER2+ breast cancer cells, co-exposure of Evolocumab with doxorubicin and trastuzumab increased significantly cell apoptosis and necrosis through the involvement of key cytokines involved in chemoresistence. Conclusions: We demonstrated, for the first time, that the PCSK9 inhibitor evolocumab exerts direct effects in cardiomyocytes and human HER2+ breast cancer cells during doxorubicin and trastuzumab exposure turning on a new light on its possible use in the management of breast cancer therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.