Abstract

BackgroundLipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) particle containing apolipoprotein(a) (apo(a)) covalently linked to apolipoprotein B-100 (apoB). Statin-treated patients with elevated Lp(a) have an increased risk of atherosclerotic cardiovascular disease (ASCVD). Recent trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition decreases Lp(a) and cardiovascular events, particularly in high risk patients with elevated Lp(a). We investigated the kinetic mechanism whereby alirocumab, a PCSK9 inhibitor, lowers Lp(a) in statin-treated patients with high Lp(a) and ASCVD. MethodsThe effects of 12-week alirocumab treatment (150 mg every 2 weeks) on apo(a) kinetics were studied in 21 patients with elevated Lp(a) concentration (>0.5 g/L). Apo(a) fractional catabolic rate (FCR) and production rate (PR) were determined using intravenous D3-leucine administration, mass spectrometry and compartmental modelling. All patients were on long-term statin treatment. ResultsAlirocumab significantly decreased plasma concentrations of total cholesterol (-39%), LDL-cholesterol (-67%), apoB (-56%), apo(a) (-25%) and Lp(a) (-22%) (P< 0.001 for all). Alirocumab also significantly lowered plasma apo(a) pool size (-26%, P <0.001) and increased the FCR of apo(a) (+28%, P< 0.001), but did not alter apo(a) PR, which remained significantly higher relative to a reference group of patients on statins with normal Lp(a) (P< 0.001). ConclusionsIn statin-treated patients, alirocumab lowers elevated plasma Lp(a) concentrations by accelerating the catabolism of Lp(a) particles. This may be consequent on marked upregulation of hepatic receptors (principally for LDL) and/or reduced competition between Lp(a) and LDL particles for these receptors; the mechanism could contribute to the benefit of PCSK9 inhibition with alirocumab on cardiovascular outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.