Abstract

We use highly accurate ab initio calculations of binding enthalpies and entropies of gas phase clusters of alcohols to demonstrate how they can be used to obtain association parameters for PC-SAFT. The thermochemical results demonstrate that cooperativity effects and state dependent cluster distributions cause a strongly varying average enthalpy and entropy per bond as function of temperature and density for alcohols. In contrast to this, the two association parameters of PC-SAFT lead to density independent bond enthalpy and entropy and are thus effective parameters. Therefore, we choose to compute the cluster distribution at a universal state point and show that the thus obtained association parameters can be used to reduce the number of adjustable parameters from 5 to 3 with only a marginal loss of accuracy for most of the studied systems, and even an estimation of thermodynamic properties without adjusted parameters is possible. The ab initio calculations suggest that the 2B association scheme is more appropriate for 1-alkanols than the 3B one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.