Abstract

Circularizing oligonucleotide probes, so-called padlock probes, have properties that should prove valuable in a wide range of genetic investigations, including in situ analyses, genotyping and measurement of gene expression. However, padlock probes can be difficult to obtain by standard oligonucleotide synthesis because they are relatively long and require intact 5'- and 3'-end sequences to function. We describe a PCR-based protocol for flexible small-scale enzymatic synthesis of such probes. The protocol also offers the advantage over chemical synthesis that longer probes can be made that are densely labeled with detectable functions, resulting in an increased detection signal. The utility of probes synthesized according to this protocol is demonstrated for the analysis of single nucleotide variations in human genomic DNA both in situ and in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.