Abstract

Incorporation of 5-bromouridine (5BrdU) into DNA makes it sensitive to UV and ionizing radiation, which opens up a prospective route for the clinical usage of 5-bromouridine and other halonucleosides. In the present work the polymerase chain reaction (PCR) protocol, which enables a long DNA fragment (resembling DNA synthesized in the cell in the presence of halonucleosides) to be completely substituted with 5BrdU, was optimized. Using HPLC coupled to enzymatic digestion, it was demonstrated that the actual amounts of native nucleosides and 5BrdU correspond very well to those calculated from the sequence of PCR products. The synthesized DNA is photosensitive to photons of 300 nm. HPLC analysis demonstrated that the photolysis of labeled PCR products leads to a significant decrease in the 5BrdU signal and the simultaneous occurrence of a uridine peak. Agarose and polyacrylamide gel electrophoresis suggest that single strand breaks and cross-links are formed as a result of UV irradiation. The PCR protocol described in the current paper may be employed for labeling DNA not only with BrdU but also with other halonucleosides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call